* The first stars

"Stéphanie Čazaux

The first stars

What are the first stars ?

How could we find informations about them in the Universe ?

What determines the characteristics of a star?

Pristine gas from the big bang: H, He and Li

The elements composing our Universe

	Н		Big Bang														He		
	Li	Зe				erno					Stars		в	С	N	0	F	INC	
	Na	Mg	Large Stars Cosmic Rays AI Si P S C											CI	Ar				
	К	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	T	Xe	
	Cs	Ba	,	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	Fr	Ra	\.							1			_	_		_			
10	_		Ņ	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			ì	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Gas made of very simple element H, He, Li 3 minutes after the Big Bang the densities and temperatures are too low to continue nuclear fusion.

After few 100000 years, the first chemical reaction starts:

$$H^{-} + H \rightarrow H_2 + electron$$

 $H_2^+ + H \rightarrow H_2 + H^+$

and lead to the formation of the most abundant molecule of the Universe: H_2

Formation of stars

Gas clouds \rightarrow gravitation vs pressure Overcome pressure to form the star

First stars: gas made of simple atoms/molecules.

Formation of the first stars

First stars are thought to be very massives → 100 times our Sun Short lifes

After 30 millions years

Life of the first stars

Massive

Short lived

Death of the first stars

How can we find the first stars ?

- What we think :
- Star with high masses Short lives and explosive death.

- How can we find these stars today? Search for First stars (not possible) Supernovae explosion-->
- 1) Gas with rest from the explosion
- 2) Next generation of stars

Life of the first stars

Clouds (very simple gas) \rightarrow very massive star \rightarrow Supernovae explosion \rightarrow what has been created is ejected What is created?

H, He He, N He, C, ²²Ne O, C O, Ne, Mg

Si. S.

e, Ni Core Massive star near the end of its lifetime has an "onion-like" structure just prior to exploding as a supernova

Red Giant Star

Different sets of nuclei are involved in the reactions that occur in each zone

The elements composing our Universe

Н				Big	Bang	J											He
Li	Be	Supernovae Small Stars											С	N	0	F	Ne
Na	Mg	🗌 Large Stars 📃 Cosmic Rays												Ρ	S	CI	Ar
к	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ba	·,	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	N.					_				_			2			
		Ň	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
		ì	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Nucleosynthesis

Supernovae explosion

Supernova Explosion Ripped Star's Guts Inside Out

Chandra X ray Cassiopeia A

Supernova explosion

NASA / JPL-Caltech / J. Rho (SSC/Caltech)

ssc2007-20b

Gas from 1st SN explosion Damped lyman alpha systems

Gas from 1st SN explosion

Observe 22 clouds with low Fe abundances

Figure 13. The abundance pattern of a typical VMP DLA is illustrated by the black boxes, where the height in each box represents the dispersion in the population. The dashed line corresponds to the solar abundance ratios.

Cooke et al. 2011

Gas from 1st SN explosion

 1^{st} SN explosion \rightarrow does not reproduce obs.

Explosion from second generation of stars → Need to taken into account to reproduce obs.

Gas from 1st SN explosion

Gas from 1st SN explosion has not been observed Mixed with explosion from other stars No real indication on the first stars of the Universe

Next generation of stars

Nucleosynthesis models → composition of the ejectas that will form the next generation of stars. Stars in the Milky Way today

Salvadori 2011

Search in our neighborhood --> some stars could possess the imprints of the 1st stars

Next generation of stars

Team in Japan : observed 150 stars with low metallicity in detail

Last august : SDSS J0018-0939

 Low carbon, magnesium, and cobalt (all considered "metals" in astronomy)
peculiarly high level of iron

1,000 light-years, 0.5 Msun

SDSS J0018-0939

Nucleosynthesis model for star of few solar masses. SDSS J0018-0939 (red circles)

SDSS J0018-0939

Nucleosynthesis model for 300 (blue) and 1000 (black) solar masses. SDSS J0018-0939 (red circles)

SDSS J0018-0939

Progenitor 140 solar masses This first detection indicates that the first stars were very massive.

The formation of stars

First stars very massives produce metals Second generation (metal enriched) have lower masses

What determines the mass of the stars ?

The birth of stars In the cloud some gas "fall" under its own gravity

The birth of stars

PRC95-44b · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

Formation of stars

Hocuk 2011

Cloud radius: 5 parsec (~ 10¹⁴ km ~10⁶ earth-sun) Cloud mass: 12,000 Msun Turbulent Composition: Milky Way

Why are elements so important?

Cloud Evolution

Heating

Cooling

Elements set the gas temperature

Chemical compositon of the cloud sets its temperature \rightarrow mass and characteristics of stars

Almost no metals (elements C, O, Fe ..)

Metals ~ our surrounding (elements C, O, Fe ..)

← Rotation

Metallicity →

Characteristics of stars (mass, multiplicity) → composition of the parent cloud

Simulations → first stars are very massive

 1^{st} observations \rightarrow first stars ~100 Msun

Thank you for your attention

The birth of stars

The cloud is rotating → Central star + disk

The birth of stars

PRC95-44b · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

The birth of stars

Stars birth, life and death

The life of stars

Nulear reactions

The life of stars

Small stars \rightarrow He 10 billion years

Massive stars → Fe 8 million years

We are made of STAR STUFF

90 % of the consituents of the human body were made in stars

A star is born

Cosmic matter cycle

